Curiosity update: A change of scenery

NLB_561562205EDR_F0661654NCAM00312M_-br2Sol 1850-51, October 18, 2017, update by MSL scientist Mark Salvatore: Since the start of our investigation of the Vera Rubin Ridge (VRR, a narrow and winding ridge that exhibits signs of oxidized iron phases from orbit), we’ve been primarily driving around on fractured bedrock material with a general lack of sand. This is unlike the landscape in the Murray formation at the base of the ridge, which was dominated by a combination of bedrock exposures and wind-mobilized sands. However, following Curiosity’s drive two days ago, the team found a local landscape dominated by small cobbles and pebbles with an abundance of fine soil surrounding these fragments. We had planned to investigate this location based on both ground- and satellite-based observations due to its different appearance relative to the rest of VRR, but this was our first up-close glimpse of this different landscape.

The science team had a few decisions to make during today’s planning session. There was time available to use the MAHLI (high-resolution imaging) and APXS (bulk chemistry) instruments located on Curiosity’s arm to investigate the surroundings, and the team was able to choose to perform either a quick “touch and go” analysis (where we are able to drive away the same day as making the measurements) or a… [More at link]

Posted in Reports | Tagged , , , , , , , , , , , | Leave a comment

MAVEN: Mars has a twisted magnetotail

mars-twisted-tailMars has an invisible magnetic “tail” that is twisted by interaction with the solar wind, according to new research using data from MAVEN.

MAVEN is in orbit around Mars gathering data on how the Red Planet lost much of its atmosphere and water, transforming from a world that could have supported life billions of years ago into a cold and inhospitable place today. The process that creates the twisted tail could also allow some of Mars’ already thin atmosphere to escape to space, according to the research team.

“We found that Mars’ magnetic tail, or magnetotail, is unique in the solar system,” said Gina DiBraccio of NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “It’s not like the magnetotail found at Venus, a planet with no magnetic field of its own, nor is it like Earth’s, which is surrounded by its own internally generated magnetic field. Instead, it is a hybrid between the two.”

DiBraccio is project scientist for MAVEN and presented this research at a press briefing Thursday, Oct. 19, during the 49th annual meeting of the American Astronomical Society’s Division for Planetary Sciences in Provo, Utah. [More at links]

[Editor’s note: A Powerpoint presentation (45 MB) is available here.]

Posted in Reports | Tagged , , , , , , | Leave a comment

HiRISE: Fresh shallow valleys

tumblr_oy12thcX8J1rlz4gso1_1280Fresh shallow valleys. Beautiful Mars series.

Posted in Reports | Tagged , , , , , , , , | Leave a comment

Missions could make oxygen on Mars using plasma technology

Mars-CropPlasma technology could hold the key to creating a sustainable oxygen supply on Mars, a new study has found.

It suggests that Mars, with its 96 per cent carbon dioxide atmosphere, has nearly ideal conditions for creating oxygen from CO2 through a process known as decomposition.

Published today in the journal Plasma Sources Science and Technology, the research by the universities of Lisbon and Porto, and École Polytechnique in Paris, shows that the pressure and temperature ranges in the Martian atmosphere mean non-thermal (or non-equilibrium) plasma can be used to produce oxygen efficiently.

Lead author Dr Vasco Guerra, from the University of Lisbon, said: “Sending a manned mission to Mars is one of the next major steps in our exploration of space. Creating a breathable environment, however, is a substantial challenge.

“Plasma reforming of CO2 on Earth is a growing field of research, prompted by the problems of climate change and production of solar fuels. Low temperature plasmas are one of the best media for CO2 decomposition –  the split-up of the molecule into oxygen and carbon monoxide – both by direct electron impact, and by transferring electron energy into vibrational excitation.” [More at links]

Posted in Reports | Tagged , | Leave a comment

Take a walk on Mars — from home

mars20171019When NASA scientists want to follow the path of the Curiosity rover on Mars, they can don a mixed-reality headset and virtually explore the Martian landscape.

Starting today, everyone can get a taste of what that feels like. NASA’s Jet Propulsion Laboratory in Pasadena, California, collaborated with Google to produce Access Mars, a free immersive experience. It’s available for use on all desktop and mobile devices and virtual reality/augmented reality (VR/AR) headsets. That includes mobile-based virtual reality devices on Apple and Android.

The experience was adapted from JPL’s OnSight software, which assists scientists in planning rover drives and even holding meetings on Mars. Imagery from NASA’s Curiosity rover provided the terrain, allowing users to wander the actual dunes and valleys explored by the spacecraft. Since being rolled out to JPL’s scientists in 2015, OnSight has made studying Martian geology as intuitive as turning your head and walking around.

Access Mars lets anyone with an internet connection take a guided tour of what those scientists experience. A simple walkthrough explains what the Curiosity rover does and details its dramatic landing in 2012. Users also can visit four sites that have been critical to NASA’s Mars Science Laboratory mission: Curiosity’s landing site; Murray Buttes; Marias Pass and Pahrump Hills. Additionally, the rover’s latest location on lower Mt. Sharp will be periodically updated to reflect the mission’s ongoing progress. [More at link]

Posted in Reports | Tagged , , , , , , , , , , , , | Leave a comment

THEMIS: Dunes in Nili Patera

Nili Patera in false color (THEMIS_IOTD_20171019)THEMIS Image of the Day, October 19, 2017. This is a false color image of part of the Nili Patera dune field. High resolution imaging by other spacecraft has revealed that the dunes in this region are moving. Winds are blowing the dunes across a rough surface of regional volcanic lava flows. The paterae are calderas on the volcanic complex called Syrtis Major Planum. Dunes are found in both Nili and Meroe Paterae and in the region between the two calderas.

The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. These false color images may reveal subtle variations of the surface not easily identified in a single band image.

NASA’s Mars Odyssey spacecraft has spent over 15 years in orbit around Mars, circling the planet more than 69,000 times. It holds the record for longest working spacecraft at Mars. THEMIS, the IR/VIS camera system, has collected data for the entire mission and provides images covering all seasons and lighting conditions.

Over the years many features of interest have received repeated imaging, building up a suite of images covering the entire feature. From the deepest chasma to the tallest volcano, individual dunes inside craters and dune fields that encircle the north pole, channels carved by water and lava, and a variety of other feature, THEMIS has imaged them all.

For the next several months the Image of the Day will focus on the Tharsis volcanoes, the various chasmata of Valles Marineris, and the major dunes fields. We hope you enjoy these images!

More THEMIS Images of the Day by geological topic.

Posted in Reports | Tagged , , , , , , , , , | Leave a comment

MARCI weather report, October 9-15, 2017

MARCI-October-10-2017The dominant weather feature last week was the aphelion equatorial condensate (water-ice) cloud belt. Predominately a northern hemisphere feature, it does extend a distance into the southern tropics. In addition, orographic condensate clouds were observed over all the major shield volcanoes across the planet. In terms of dust storm activity, occasional local dust storms were observed extending southward from the… [More at link, including video]

Posted in Reports | Tagged , , , , , , , , , , , , , | Leave a comment

Seeking microbial biosignatures for studying Mars rocks

2b7749a383Scientists around Tetyana Milojevic from the Faculty of Chemistry at the University of Vienna are in search of unique biosignatures, which are left on synthetic extraterrestrial minerals by microbial activity. The biochemist and astrobiologist investigates these signatures at her own miniaturized “Mars farm” where she can observe interactions between the archaeon Metallosphaera sedula and Mars-like rocks. These microbes are capable of oxidizing and integrating metals into their metabolism. The original research was currently published in the journal Frontiers in Microbiology.

At the Department of Biophysical Chemistry at the University of Vienna, Tetyana Milojevic and her team have been operating a miniaturized “Mars farm” in order to simulate ancient and probably extinct microbial life – based on gases and synthetically produced Martian regolith of diverse composition. The team investigates interactions between Metallosphaera sedula, a microbe that inhabits extreme environments, and different minerals which contain nutrients in form of metals. Metallosphaera sedula is a chemolithotroph, means being capable of metabolizing inorganic substances like iron, sulphur and uranium as well.

To satisfy microbial nutritional fitness, the research team uses mineral mixtures that mimic the Martian regolith composition from different locations and historical periods of Mars: “JSC 1A” is mainly composed of palagonite – a rock that was created by lava; “P-MRS” is rich in hydrated phyllosilicates; the sulfate containing “S-MRS”, emerging from acidic times on Mars and the highly porous “MRS07/52″ that consists of silicate and iron compounds and simulates sediments of the Martian surface.

“We were able to show that due to its metal oxidizing metabolic activity, when given an access to these Martian regolith simulants, M. sedula actively colonizes them, releases soluble metal ions into the leachate solution and alters their mineral surface leaving behind specific signatures of life, a ‘fingerprint’, so to say”, explains Milojevic. The observed metabolic activity of M. sedula coupled to the release of free soluble metals can certainly pave the way to extraterrestrial biomining, a technique which extracts metals from ores, launching the biologically assisted exploitation of raw materials from asteroids, meteors and other celestial bodies… [More at links]

Posted in Reports | Tagged , , , , , , , , | Comments Off

Opportunity report, Sol 4864, by A.J.S. Rayl, The Planetary Society

20171002_3-Flag-911-WTCmetal-guards-RAT-Sol2713_RAT_flag_context_rot_br2October 2, 2017: Opportunity Braves Onset of Winter to Picture Perseverance. The Martian winter began to grip Endeavour Crater in September, slowing the pace of the Mars Exploration Rovers mission. But Opportunity braved the brutal cold in Perseverance Valley and followed her commands to visually document everything in sight with images, and even check out a couple of pebbles up close.

The veteran robot field geologist is on a small rise along the southern ‘wall’ or side of the valley, which cuts into the western rim of Endeavour at Cape Byron. Opportunity drove onto the slope, at the end of August. The second of seven planned science stops on a route that extends from the top to the bottom of the valley and the interior of Endeavour Crater, the site is about a third of the way down the valley. Known simply as station 2, it’s where the rover would spend the month of September.

“Winter is setting in and we’re getting cold,” said MER Chief of Engineering Bill Nelson, of the Jet Propulsion Laboratory (JPL), the NASA center that has produced all of the American Mars rovers. (…)

Opportunity is producing enough energy to survive and to work, but she’s had to use a lot of that energy just to keep warm. The robot’s two rechargeable lithium ion [Li-ion] batteries, which provide energy for the rover when the Sun isn’t shining, are in effect her heartbeat. That heartbeat is being strained and the depths of the season are still ahead. (…)

“The morphology of the valley is quite interesting … there’s a little more diversity of rocks here than what I think we expected,” Golombek elaborated. “You never know what you’re going to get until you get there, but it looks like there are different things here. If there are other rock types, then maybe they can tell us something about the structure, the rim of the crater, and the erosion that’s occurred to preserve it.” [More at link]

Posted in Reports | Tagged , , , , , , | Comments Off

HiRISE: Where does the sand come from?

ESP_051780_1725The grains of sand that make up sand dunes on Earth and Mars have a hazardous existence because of the way that they travel. Wind-blown sand is lifted above the surface of each planet before crashing onto the ground and bouncing in a sequence of repeated hops, a process called saltation.

Sand grains can also roll along the ground as they are blown by the wind, and they are also jostled by other sand gains that are similarly flying across the surface. All of these repeated impacts tend to wear down the sand grains, smoothing them into a more spherical shape and breaking off small fragments that supply the vast dust deposits of Mars. This process (known as comminution) ultimately destroys sand grains and limits the length of time that the particles exist. The fact that we see active sand dunes on Mars today… [More at link]

Posted in Reports | Tagged , , , , , , , , | Comments Off