When searching for life, scientists first look for an element key to sustaining it: fresh water.
Although today’s Martian surface is barren, frozen and inhabitable, a trail of evidence points to a once warmer, wetter planet, where water flowed freely. The conundrum of what happened to this water is long standing and unsolved. However, new research published in Nature suggests that this water is now locked in the Martian rocks.
Scientists at Oxford’s Department of Earth Sciences, propose that the Martian surface reacted with the water and then absorbed it, increasing the rocks oxidation in the process, making the planet uninhabitable.
Previous research has suggested that the majority of the water was lost to space as a result of the collapse of the planet’s magnetic field, when it was either swept away by high intensity solar winds or locked up as sub-surface ice. However, these theories do not explain where all of the water has gone.
Convinced that the planet’s minerology held the answer to this puzzling question, a team led by Dr Jon Wade, NERC Research Fellow in Oxford’s Department of Earth Sciences, applied modelling methods used to understand the composition of Earth rocks to calculate how much water could be removed from the Martian surface through reactions with rock. The team assessed the role that rock temperature, sub-surface pressure and general Martian make-up, have on the planetary surfaces. [More at link]
[Editor’s note: Two papers are referenced in this story, both published in Nature. The Wade et al. paper is here, the Clay et al. paper is here.]